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Abstract 
A new algorithm is proposed to convert an arbitrary primitive 
cell of various Bravais lattices into the reduced (Niggli) cell. 
The geometrical basis of this algorithm is briefly discussed. 

Buerger cell 
Consider a primitive unit cell U of a given lattice defined by 
the three non-coplanar vectors ,, b, c, with the cell matrix 

( b . a  b - b  C . b ) ( A  B C )  
c c a a = E F " (1) 

U is called a Buerger cell if, and only if, the sum S of the 
lengths of a, b, c yields an absolute minimum value (Gruber, 
1989), i.e. 

s = lal + Ibl + Icl = a b s  min (2) 

(the symbol abs before min indicates that all primitive cells of 
the lattice have to be taken into account). 

Expression (2), although it is well defined, does not suggest 
a direct evaluation of the Buerger cell. Nevertheless, we may 
replace it by the following inequalities: 

(i) A < B < C  

(ii) IFI < A/2 

(iii) I O l _  n/2 

(iv) ILl < A/2 

(v) ID + EI <_ (A + B + 2 F)/2. 

(3) 

A brief geometrical account for the conditions (i)-(v) is 
given as follows: the basis vectors a, b, c are ordered in such a 
way that c is not shorter than b and b is not shorter than a [(i)]; 
the perpendicular projection of b onto a is necessarily within 
the halves of + a  [(ii)]; the perpendicular projection of the end 
point of c on the plane containing a and b is closer to the 
origin O than all other lattice points on that plane, i.e. within 
the two-dimensional Voronoi domain around O [(iii)-(v)]. 

By means of an algorithm proposed by Buerger (1957, 1960) 
and refined by Gruber (1973), it is possible to transform an 
arbitrary primitive cell into a Buerger cell. The main feature 
of the algorithm is the use of an iterative process subject to 
the individual conditions (i)-(v). Since the sum S diminishes 
at every step, a Buerger cell would be reached eventually. 
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An alternative procedure is described here which is 
considered to be an immediate consequence of the above 
geometrical interpretation of the Buerger cell. The crucial 
point of this procedure is to satisfy simultaneously conditions 
(iii)-(v). Now let us go into detail. 

We can start from any given primitive cell with the original 
basis vectors a, b, c. The basis vectors are first modified to 
fulfil the conditions (i) and (ii) (Gruber, 1973). In the next 
step, the perpendicular projection of c on the ab net plane 
is constructed (Fig. 1). It is essential to find the net point N 
closest to the tip P of the resultant vector OP in the net. The 
lattice vector ON needs to be subtracted from c. In this way, 
a new basis vector c, which is shorter than the old one, is 
found without altering the other two basis vectors a and b; 
meanwhile, it generally meets the conditions (iii)-(v). 

There exist limiting cases where two, three or even four 
net points have respective closest distances of the same value, 
i.e. P lying on the borders of a Voronoi domain. Since such 
geometrical situations are essentially related to the ambiguities 
of the Buerger cell, any of these net points can be chosen as 
long as the reduced cell has not been involved. Otherwise, a 
unique choice is to be made by imposing additional conditions, 
e.g. Gruber's geometrical criteria used in the present reduction 
procedure. Furthermore, the resulting c may be shorter than b. 
If this occurs, the whole procedure has to be repeated until 
the basis vectors a, b, c form a Buerger cell. It is easily seen 
that the present procedure, besides being logically reasonable, 
reduces the sum S very effectively, especially when starting 
from a highly deformed primitive cell. Moreover, it opens a 
direct way to the determination of the reduced cells, as will be 
shown in the next section. 

By convention, a general Buerger cell is normalized by 
means of the relations (Santoro & Mighell, 1970; Gruber, 

b / NI', 

0 - a  
Fig. I. Perpendicular projection of the basis vector c onto the net plane 

containing the basis vectors a and b. N is the nearest net point to the 
tip P of the resultant vector OP. 
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1973): 

if A - B then 

if B = C then 

either D, E, F > 0 

or D , E , F  < O. 

IOl ~ IEI 

IEI ~ IFI 
(4) 

Geometr ical ly  speaking, the first two conditions make it 
possible to label the cell edges uniquely when two of  them 
are equal, and the latter two to keep the interaxial angles 
c~ -- / ( b ,  c), # = / ( c ,  a),  3" = /_(a, b) all acute or all obtuse. In 
what follows, we shall always use this normalized description 
without saying it explicitly. 

tested for the different cases according to the 44 Niggli lattice 
characters. The algorithm starts from any given primitive cell 
with the characteristic parameters A, B, C, D, E, F. After  being 
normalized with points G1-G4,  the reduction is first made for 
the basis vector b while the other two basis vectors a and 
c remain unchanged. This is done with points G5--G7. Then 
c is reduced with respect to the tentatively fixed a and h 
through G8-G13.  The most  interesting fact is that both the 
main and the relative extremal conditions are implemented in 
a rather logically compact  formulation (with no violation of  
each other). The reduction procedure will end definitely after a 
few iterations as is guaranteed by the property i, j = 0. At this 
point, it outputs the characteristic parameters of  the Niggli cell. 

Algorithm 

Niggli cell GO 
Gruber  (1989) has demonstrated that four types of  reduced cell GI  
may  be chosen out of  the same set of  Buerger cells. Basically, G2 
the four variants of  reduced cells do not differ in principle 
from one another. Here we consider only one of  them, that is, G3 
the widely used Niggli cell. Apparently,  if the Buerger cell of  

G4 
a given lattice is unique, it must  be the Niggli cell. In general, 
a Buerger cell is seen to be the Niggli cell if, and only if, the G5 
additional extremal condition is true for a Buerger cell with G6 
max imum deviation /~ (Gruber, 1989): G7 

6 = 17r/2 - o~ I + 17r/2 - #1 + 17r/2 - 3'1 = rel max, (5) G8 

where  the symbol rel before max means that all possible 
Buerger cells have to be taken into account. With (4), 6 can 
be written 

G9 
6 = 3 r / 2  - arccos [IOl/(nc) 1/'e] - arccos [IEI/(CA) ~/'~] GI0  

- arccos [IFI/(AB) ~/2] 
= rel max. (6) G II 

As a formal definition, the relative extremal condition (5) G12 
allows an easy geometrical  interpretation on the Niggli cell. The 
question arises whether  it is convenient  to be incorporated into 
the main extremal condition (2). This seems rather troublesome G 13 
for most  existing procedures. Of  course, the analytical form of  
the Niggli criterion may  be applied as a substitute (Santoro & 
Mighell, 1970). In our procedure,  however,  the condition (5) or G14 
(6) is taken as a useful means for resolving the ambiguities of  
the Buerger cell, as already mentioned. To be precise, we may 
temporarily refer to the preceding discussion on the reduction 
of  the basis vector c. Since at that step both a and b are kept 
fixed, the three-dimensional reduction problem reduces to a 
two-dimensional  one. If, now, more than one net point has the 
smallest distance from P, only their second and third terms in 
(6) need to be calculated and compared so as to yield a unique 
solution. The same holds for the reduction of  b while a and 
c remain unchanged. Note that expression (5) of  the present 
procedure may be replaced by some other relative extremal 
conditions such as min imum deviation, max imum surface or 
min imum surface (Gruber, 1989). Again, the determination of  
the reduced cells is simple and straightforward. 

Algorithm 
A complete  algorithm for determining the Niggli cell is 
formulated here in Gruber 's  (1973) notation. It has been 

Input: A, B, C, D, E, F. 

If A > B or A = B, IDI > IEI, exchange A ~ B, D ~ E. 

If B > C or B = C, IEI > IFI, exchange B ~ C, E ,---, F 
and go to the point G1. 

If DEF > 0, let D = IDI, E = IEI, F = IFI. 

If DEF < 0, let D = - IDI ,  E = - IEI ,  F = - IFI .  

Let u = F /A ,  i = entier(u)t ,  u = u - i. 

If u > 0.5 or u = 0.5, ID - El > IDI, let i = i + 1. 

I f i ~ 0 , 1 e t B  = B  + i 2 A -  2iF, D = D -  iE, F = F -  
iA and go to the point G1. 

Let X = AB - F 2 ,  u --- (BE - DF) /X,  v = (AD - EF) /X ,  
i l = entier(u), j l = entier(v), u = u - i l, v = v - j l, 
X1 = A -  2uA - 2vF, X2 = B - 2vB - 2uF, X3 = 
X1 + X 2 + 2 F ,  w = - l , X = a m i n ( 0 ,  X1, X2, X3)~. 

I f X  = 0 , 1 e t i =  i l ,  j = j l ,  w = Q( i , j )§ .  

I f X  = X1, Q(il  + 1, j l )  >__ w, l e t i  = il + 1, j = j l ,  
w = Q(i, j). 

If  x = x2 ,  Q(i l ,  j l  + 1) > w, let i = i l ,  j = j l  -t- 
1, w = Q(i, j). 

If x = x3 ,  Q(il  + 1, j l + 1) > w, let i = i l + 1, 
j = j l  + 1, w = Q ( i , j ) .  

I f i  ~ 0 o r j  :/: 0, let C = C + i2A + j2B + 2 ( i j F -  
iE - jD), D = D - i F -  jB, E = E - iA - jF and 
go to the point G1. 

Output: A, B, C, D, E, F. 

A comparison of  the present algorithm with that by Kfiv~, 
& Gruber (1976) was made through a numerical  example.  
The results show that our reduction procedure yields a much 
shorter list of  the intermediate results and hence converges 
more quickly to the solution. 

LZ is grateful for the support from the National Education 
Committee of  China and from the Ministry of  Metallurgical 
Industry of  China. 

t entier(X) is an intrinsic function that returns the greatest integer 
whose value does not exceed the value of the argument X, i.e. 
0 < X-entier(X) < 1. 

$ amin(X1, X2 ..... Xn) is an intrinsic function that returns the 
minimum value among the argument list; there must be at least two 
arguments. 

§ Q(i, j) is an external function that is defined by Q(i, j) = pq - [(1 - 
p2) (1 - q2)]1/2, p = ID - iF - jBI/(BC) 1/2, q = IE - iA - jFI/(CA) 1/2. 
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A b s t r a c t  

At 3 to 4 ,~, resolution, the electron density of  a protein may be 
modeled by a continuous chain of 'globs '  representing the 
amide region of  the peptide backbone and the side-chain 
residues. Group scattering factors are derived from a trans 
planar C o t C : O N C o t  backbone segment and most favored side- 
chain conformer for 18 different amino acids. Trial calculations 
indicate that the phase error and crystallographic residual 
comparing the atomic and 'globic '  models rapidly decrease 
from high to low resolution. At 3 A resolution, the phase error is 
approximately 80 ° . These results indicate that the electron 
density of a protein composed of N amino acid residues may be 
adequately modeled by 2N globs at low resolution. 

Introduction 

David Harker pointed out in 1953 that 'globs ' ,  i.e. the total 
electron density of  clusters of atoms within a local region of  the 
molecular envelope, may provide a more accurate representa- 
tion of  the average intensity for a protein at low resolution than 
the sum of  the square of its atomic structure-factor magnitudes,  
and suggested using this concept in data reduction to obtain 
a better scale and temperature factor (Harker, 1953). This 
analysis is only appropriate for macromolecules that are well 
separated by solvent boundaries in large unit cells. Similar 
efforts to obtain better scaling of the normalized E values for 
the MULTAN program make use of  much smaller chemically 
rigid molecular fragments of  unknown position and orientation 
(Main, 1976); the contribution of  these fragments to the average 
intensity utilizes an expression derived by Debye (1915). 
Podjarny and co-workers used three group scatterers (phos- 
phate, ribose, nucleic acid bases) to assign peaks in low- 
resolution MIR maps of  tRNA Met prior to using other methods 
to extend phases to data at higher resolution and fill in low- 
order terms that were not reliably determined by the MIR 
process (Podjarny & Yonath, 1977; Podjarny, Schevitz & 
Sigler, 1981; Podjarny & Faerman, 1982). 

The concept of  atomicity for small structures is useful since, 
at atomic resolution, the atoms of  the structure are recognizable 
in an electron-density map. For proteins, however,  a more 
useful concept is 'globicity' ,  which is based on the fact that 
'globs ' ,  consisting of  groups of atoms in the unit cell, are the 
only recognizable features in low-resolution electron-density 
maps. In the situation that one cannot confidently fit the known 
protein sequence to a low-resolution density map, globs may 

Table 1. Glob scatterers for the common amino acid residues 

Column 4 lists the one-letter code used for simplified identification 
purposes, Z is the number of electrons in the chemical group and R is 
the residual of fit between the Debye group scattering factor and its 
analytical exponential form as defined by equation (4). 

Three-letter One-letter No. of 
No. Chemical name symbol symbol Atoms Z R 

Cot-- 
0 Peptide O = C ~  N--  X 4 27 0.0013 

1 Glycine Gly G H atom 
2 Alanine Ala A C atom 
3 Cysteine Cys C 2 22 0.0002 
4 Serine Ser S 2 14 0.0009 
5 Valine Val V 3 18 0.0006 
6 Threonine Thr T 3 20 0.0004 
7 Proline Pro P 3 18 0.0005 
8 lsoleucine lie 1 4 24 0.0005 
9 Leucine Leu L 4 24 0.0022 

10 Methionine Met M 4 34 0.0001 
11 Asparagine Asn N 4 27 0.0016 
12 Aspartate Asp D 4 28 0.0013 
13 Glutamine Gln Q 5 33 0.0003 
14 Glutamate Glu E 5 34 0.0001 
15 Lysine Lys K 5 31 0.0012 
16 Histidine His H 6 38 0.0004 
17 Phenylalanine Phe F 7 42 0.0001 
18 Arginine Arg R 7 45 0.0014 
19 Tyrosine Tyr Y 8 50 0.0007 
20 Tryptophan Trp W 10 61 0.0013 

offer a viable alternative for model fitting and real-space phase 
improvement.  

At low resolution, each glob may be treated as a spherically 
averaged cluster as its shape will be insufficiently resolved to 
determine the orientation of  the underlying chemical group. The 
group scattering factors of these spherically averaged clusters 
may be analytically defined as a nine-coefficient exponential 
expression in sin 0 /2  as shown previously (Cromer & Waber, 
1965). Globs chosen from such a tabulation would logically 
correspond to the trans planar peptide segments in the 
backbone of polypeptide chain and the most favored con- 
formations of the 20 amino acid side chains. Metal ions and 
ordered solvent water would still be regarded as single atoms. 

A trace of the protein backbone of  a polypeptide chain 
undoubtedly plays a major role in initial phasing, and it may 
be more straightforward to represent it as a strand of  globs that 
are individual peptide segments, as compared to fitting a 
polyalanine model to the density. The geometry and dimensions 
of  the peptide bond were given by Pauling, Corey & Branson 
(1951) and well described later (Schulz & Schirmer, 1979). For 
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